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Abstract

Medical multi-modal learning requires an effec-
tive fusion capability of various heterogeneous
modalities. One vital challenge is how to ef-
fectively fuse modalities when their data qual-
ity varies across different modalities and patients.
For example, in the TCGA benchmark, the per-
formance of the same modality can differ be-
tween types of cancer. Moreover, data collected
at different times, locations, and with varying
reagents can introduce inter-modal data quality
differences (i.e., Modality Batch Effect). In
response, we propose Adaptive Modality Token
Re-BalanCing (AMC), a novel top-down dynamic
multi-modal fusion approach. The core of AMC
is to quantify the significance of each modality
(Top) and then fuse them according to the modal-
ity importance (Down). Specifically, we assess
the quality of each input modality and then re-
place uninformative tokens with inter-modal to-
kens accordingly. The more important a modal-
ity is, the more informative tokens are retained
from that modality. The self-attention will fur-
ther integrate these mixed tokens to fuse multi-
modal knowledge. Comprehensive experiments
on both medical and general multi-modal datasets
demonstrate the effectiveness and generalizability
of AMC. Code is available at https://github.
com/PengJieb/amc.

1. Introduction

Multi-modal learning has advanced medical analysis by
integrating diverse data sources (e.g., clinical, imaging, ge-
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Figure 1. The top part of the figure illustrates how the quality of
different modalities can vary dynamically. The bottom part shows
how variations within the same modality across different cancer
types can directly impact final task performance. The red box
indicates the best performance across these three modalities.

netic) (Han et al., 2024; Yun et al., 2024a; Mobadersany
etal., 2018; Yan et al., 2021; Yap et al., 2018; Boehm et al.,
2022a; Vanguri et al., 2022; Zhou et al., 2023; Lipkova
et al., 2022; Chen et al., 2022a; Steyaert et al., 2023; Boehm
et al., 2022b; Im et al., 2023; Chen et al., 2024b). These
data provide a comprehensive view of patient health, en-
abling personalized treatments and enhancing diagnosis and
prediction across medical applications.

One vital challenge in multi-modal medical learning is ef-
fective multi-modal fusion when data quality varies across
different modalities and patients (see Figure 1) (Liu et al.,
2024a; Chen et al., 2024a; Sparring et al., 2018; Ghalavand
et al., 2024). Most previous fusion methods are designed
for visual, text, and audio data (Lin et al., 2024b; Sun et al.,
2021; Joze et al., 2020; Cao et al., 2023), but they do not
address the specific needs of the medical domain. Medi-
cal data involves more heterogeneous modalities, such as
genomics, neuroimaging, and biofluid biomarkers, which
require specialized fusion techniques.

Prior dynamic fusion (Wang et al., 2022b; Sun et al., 2021;
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Joze et al., 2020; Cao et al., 2023) methods use mechanisms
like self-attention (Yun et al., 2024a; Han et al., 2024), cross-
attention (Wu et al., 2023), or gating networks (Rahman
et al., 2020) to implicitly decide each modality’s contri-
bution and fuse them accordingly. Recently, in the era of
multi-modal large language models (MLLMs) (Lin et al.,
2024b; Liu et al., 2025; Guo et al., 2025; Liu et al., 2023b;
2024b; Li et al., 2023a), approaches like LLaVA (Liu et al.,
2023b; 2024b) project other modalities into the language
token space, utilizing self-attention to integrate all modali-
ties. This has increased interest in improving self-attention
for multi-modal fusion (Wu et al., 2024; Zhao et al., 2023).
However, vanilla self-attention can be problematic, as it
often assigns diluted attention weights to irrelevant contexts,
leading to sub-optimal performance (Wang et al., 2022b;
Ye et al., 2024). A possible solution is token fusion (Wang
et al., 2022b), which replaces uninformative tokens with
inter-modal tokens to better integrate information from vari-
ous modalities for dynamic fusion. Token fusion has shown
effectiveness and efficiency in visual fusion tasks. However,
it focuses on alignment-aware fusion, requiring explicit re-
lationships between modalities, such as shared pixels or 3D
coordinates. This requirement limits its application in the
medical domain, where such relationships are difficult to
ascertain, like linking a sub-region of a pathology image
with specific genes.

In response, we start with the perspective that modalities
contribute unequally. Specifically, we propose a top-down
dynamic multi-modal fusion method called the Adaptive
Modality Token Re-Balancing method (AMC), which dynam-
ically balances modality contributions via self-attention. Un-
like previous methods that learn modality contributions im-
plicitly, we emphasize that explicitly recognizing unequal
contributions of modalities could be more beneficial. Our
AMC method works in two main steps. First (Top), it iden-
tifies the importance of each modality. We calculate this
using attention distribution. This step helps determine how
many tokens from each modality should be replaced with to-
kens from other modalities. This explicit calculation makes
each modality’s contribution interpretable, which is cru-
cial in the Al4Medical field (Duan et al., 2024; Wang et al.,
2024). Second (Down), we replace tokens with lower scores
with tokens from other modalities, based on the modality’s
importance. The token score, also derived from attention
distribution, guides this token replacement process. This
approach ensures that we prune uninformative tokens and
utilize informative tokens from other modalities for fusion.
In our model design, we use a single transformer branch
to process all modalities. We introduce specific modules
within the transformer block to enhance parameter efficiency
and fusion quality, supporting the AMC. These include an
improved self-attention design, a sparse mixture-of-experts
(SMoE) module, and a two-level contrastive learning loss.

We demonstrate the effectiveness of AMC through extensive
experiments on several real-world datasets, including the
MIMIC-IV dataset, the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) dataset, and a subset of the TCGA
benchmark covering five different cancer types. The re-
sults confirm the robustness of AMC across diverse medical
scenarios. The contributions of this work are as follows:

* We introduce a novel top-down dynamic fusion mecha-
nism that adaptively integrates multi-modal informa-
tion, addressing the variation in data quality across
different modalities and patients in various medical
domains.

e AMC features a novel token fusion approach, includ-
ing attention-based modality importance calculation,
token score assignment, token replacement policy, and
a customized transformer block design.

» Extensive experiments on real-world datasets, includ-
ing ADNI, MIMIC-1V, and TCGA, demonstrate the
consistent and robust performance of AMC in handling
variations in data quality.

2. Related Work

Multi-modal Learning with Transformers. Recently,
Transformer-based Multimodal learning has achieved sub-
stantial progress(Liu et al., 2023a; Li et al., 2023b; Lin et al.,
2024a; Dai et al., 2023), due to their unique advantages
and scalability in modeling different modalities, such as
language, image, audio, video, etc. Inspired by the great
success of Transformer-based pretraining in the NLP do-
main(Touvron et al., 2023; Devlin et al., 2019; Brown et al.,
2020; Bai et al., 2023; DeepSeek-Al et al., 2024), a series
of works(Dosovitskiy et al., 2021; Sun et al., 2019; Radford
et al., 2021; Li et al., 2022a; Lu et al., 2019; Chen et al.,
2020) have demonstrated that if pre-trained on large-scale
multi-modal datasets, Transformer-based models outper-
form other domain-specific models in a wide range of multi-
modal tasks, and more importantly, achieve remarkable
zero-shot generalization ability. For example, (Liu et al.,
2024c) proposes a tight fusion solution to fuse language and
vision modalities, and develops an open-set object detector
that can detect arbitrary objects with language inputs such
as category names or referring expressions.

Dynamic Multi-modal Fusion. In multi-modal learning,
the importance of modalities can vary based on the task
and input data quality. Thus, dynamic fusion methods that
adapt to these changes are crucial (Zhang et al., 2024; Guan
et al., 2019; Han et al., 2020; Tian et al., 2020; Chen et al.,
2022b; Sun et al., 2021; Hazarika et al., 2018; Joze et al.,
2020; Cao et al., 2023; Yun et al., 2024a). TensorFusion
(Zadeh et al., 2017) integrates all modalities by using a
tensor fusion network to handle both intra-modality and
inter-modality dynamics. FlexMoE (Yun et al., 2024a) and
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LiMoE (Mustafa et al., 2022) use self-attention with sparse
mixture-of-experts to adaptively integrate multiple modal-
ities and reduce interference. FuseMoE (Han et al., 2024)
and MAGGate (Rahman et al., 2020) apply gating networks
for dynamic fusion. MUSE (Wu et al., 2023) uses graph net-
works and contrastive learning to fuse modalities effectively
for predictions. Token fusion (Wang et al., 2022b) mini-
mizes computation and prevents attention from focusing on
irrelevant contexts by using inter-modal tokens. Despite
these advancements, most methods focus on traditional sce-
narios like visual detection, semantic segmentation, and
audio-visual tasks. Evaluating each modality’s contribution
and effectively fusing heterogeneous modalities is still a
challenge, especially in medical multi-modal tasks.

3. Preliminaries and Notations

Token Fusion. Token fusion (Wang et al., 2022b) is origi-
nally designed for fusing vision transformers with homoge-
neous or heterogeneous modalities. After each transformer
layer, it employ addition feed-forward MLP layer as scoring
layer s,,(-) to dynamically predicts the importance of to-
kens for the m-th modality. Given input multi-modal tokens
{%,, }M_, and the inter-modality token is well aligned!, the
token fusion of n-the token is defined as:
Xm [n] =Xm [n} ®© Hs(xm [n])>6
. , (D
+ Z am (m)[n] © h(Xn [n]) © Ly, (n)) <0
m’'#m

where M is the number of all modalities, /N is the number
of tokens of each modality, and I is an indicator asserting
the subscript condition, therefore it outputs a mask ten-
sor {0,1}". The x,,[n] denotes the n-th token of m-th
modality. The parameter # is a small threshold, and the
operator ® resents the element-wise multiplication. The
a,(m) € {0,1}", and a,, (m)[n] = 1 indicators the
n-th token of the m-th modality can be substituted by
the corresponding token of the m’-th modality, otherwise
ay(m)[n] = 0. When the number of modality M = 2,
the a,,(m)[n] is set to 1 by default. The h(-) is used to
select tokens that correspond to the same things between
modalities m and m'. For homogeneous modalities, h(-) is
an identity function. For heterogeneous modalities, i() is
defined as a projection function that uses modality-relevant
domain knowledge to map the input token to its equivalent
in another modality.

However, the original token fusion has several drawbacks
which limit it applicability: (1) It assumes an explicit map-
ping relationship between modalities, which is necessary to

'The n-the token X, [n], X [n] for modality m and m' are
represent the same things in the physical world. For instance,
Xm[n] and x,,[n] denote the same object on corresponding RGB
and depth images.

map one modality m into another modality m’ for replace-
ment. In many medical tasks, such explicit relationships are
difficult to establish. For example, the relationship between
pathology images and genetic profiles is unclear, and there
is no exact mapping between them. (2) The setting of the pa-
rameter 0 requires additional effort. A reasonable value for
6 varies across tasks. For instance, tasks in the original pa-
per set @ = 0.01. However, in our medical tasks, no tokens
would be replaced with § = 0.01. (3) The values in a,,(m)
are randomly predefined. Consequently, if a,,,(m)[n] = 0,
the n-th token will never be replaced from m’ to m. It as-
sumes that all modalities can capture the right information
about the same objects, neglecting the heterogeneity and
varying abilities of different modalities.

4. Top-down Dynamical Fusion: AMC

In this section, we introduce our overall network architec-
ture (Section 4.1) and the proposed Adaptive Modality To-
ken Re-BalanCing (AMC) method. AMC accounts for the
varying contributions of each modality across instances.
It comprises two key operations: Modality Importance
Calculation (Section 4.2) and Customized Token Fusion
(Section 4.3). The Modality Importance Calculation com-
putes the importance of each modality using attention dis-
tribution. It dynamically identifies contribution differences
between modalities. The Customized Token Fusion then
replaces these tokens with inter-modal features based on
their calculated importance. For each instance, we calculate
the modality importance to ensure effective fusion. Finally,
we introduce two key network designs that enhance token
fusion quality (Section 4.4).

4.1. Overall Network Architecture
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prises three components in turn: the modality-specific en-
coder, consecutive improved transformer blocks with AMC,
and task head. @ The modality-specific encoder encodes
modality m into a sequence of tokens x,, € RV*P where
N is the number of tokens, and D is the feature dimen-
sion. The structure of the modality-specific encoder relies
on corresponding domain knowledge. For each task, we use
Q-Former (Li et al., 2023c¢) in the modality-specific encoder
to ensure the number of tokens N is the same across input
modalities. ® The improved transformer block replaces the
self-attention module with the differential attention mod-
ule (Ye et al., 2024) and substitutes the MLP layer with a
Sparse Mixture-of-Experts (SMoE) layer. Subsequently, we
concatenate multi-modal input {x,, }}/ along the batch di-
mension, resulting in the transformer input @ € RM*N*D
where M is the number of modalities. After passing through
the consecutive transformer layers, we split a back into
{x }M. Each «,, undergoes average pooling, and the
pooled outputs are concatenated and reshaped into a single
feature vector. ® This vector is then fed into the task head,
which employs a linear layer to produce the final prediction.
To enhance modality fusion, we incorporate AMC between
adjacent transformer layers. This approach facilitates the
effective integration of information across modalities.

The computational increase from multi-modal input pri-
marily arises from the modality-specific encoders. During
fusion, the token sequence length remains the same as for a
single modality input, N, but the batch size increases by a
factor of M, the number of modalities. The computational
complexity of concatenating all modalities into a longer se-
quence for the fusion is O((M N)?). Using cross-attention
for fusion, ensuring attention between every pair of modali-
ties also has a complexity of O((];I) (N)?) = O((MN)?).
However, our computational complexity in the attention
module is O(M (N)?). The increased computational load
from multiple modalities of our method can be handled by
the parallel computing power of GPUs. Thus, with sufficient
GPU power, the actual complexity in the attention module
reduces from O(M (N)?) to O(N?).

4.2. Modality Importance Calculation

To obtain the importance of each input modality for sub-
sequent customized token fusion. We utilize the attention
distribution from the last transformer block, represented by
the attention map A = RM*NXN_First, we compute the
maximum value across the last dimension for each element,
resulting in maxy, (A, 1) € RM*N . This operation helps
us capture the significance of each token. Next, we compute
the average across the sequence dimension (the last dimen-
sion) of maxy (A, n k) to obtain the statistical information
as the modality importance indicator. This yields the vector
o € RM, where each element o[m] corresponds to the av-
erage of the maximum values for the m-th modality across

all sequences. Last, we normalize o and interpret as the
modality importance s € [0, 1]*. The vector s emphasizes
which modalities have the most consistent maximum val-
ues, indicating their relative importance. In summary, the
modality importance s € [0, 1]* is obtained as follows:

olm] = Mean(m]‘?X(Am,n,k)[ms 1)
ﬂ ) (2)
S ol

s =

The notation [m, :] indicates selecting all elements along the
sequence dimension for the m-th modality. The colon “:”
signifies selection across the entire dimension. The function
Mean(-) returns the average of the given vector. The variable
s represents the attention weight for each modality. We
define the number of uninformative tokens for the m-th
modality as K,,, = floor(s[m] x N). Thus, we prune K,
tokens in the m-th modality and impute them using inter-
modal tokens {x,' }M, 4m- This approach avoids setting a
threshold for token fusion as in vanilla token fusion.

|Improved Transformer BlockHImproved Transformer Blockl" .
’ ———[xf)
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Figure 3. Customized Token Fusion. RQ1, RQ2, and RQ3 cor-
respond to the three research questions detailed in Section 4.3.
We first identify the token score (Equation 3) and modality impor-
tance (Equation 2) via the attention distribution. Then we utilize
this information to decide which token should be replaced and
selected to impute intra-modal tokens (Equation 4). Finally, we
use {xm}%zl for the final prediction.

manklmy 5 1)

4.3. Customized Token Fusion

After obtaining the number of uninformative tokens for each
modality, the next step is to perform token fusion. However,
as discussed in Section 3, several challenges hinder the
application of token fusion from visual fusion scenarios to
broader medical applications. To adapt to medical multi-
modal learning, we propose a novel token fusion method,
illustrated in Figure 3. In this subsection, we introduce our
token fusion by addressing three specific research questions.

RQ1: How to identify uninformative tokens?
A1l: The attention distribution tells you.

Unlike the original token fusion uses an additional scoring
network with token-wise pruning loss to obtain the token
score that indicate the informative level of tokens. Here, we
use the attention distribution as the token score which avoids
additional scoring network and corresponding token-wise
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pruning loss. Specifically, the token score is obtained by:

i, ) = max(Am i), )

where nm, n] denotes the token score for m-th modality,
n-th token. This computing is overlapped with modality
importance calculation, so we do not involve additional
computation here. According to the token score 7[m, :], we
select these Bottom-K,,, tokens as uninformative tokens.

RQ2: Which token from other modalities should re-
place an uninformative token?

A2: Contrastive loss narrows the search space, then
selecting the token with the highest score.

Due to the heterogeneity between medical multi-modal data,
the initial search space for the candidate replace token is
{Xm } sy for the uninformative token x,,,[n]. The token

in {x,, }, 4m contains both redundant and complemen-
tary. The token score 7 cannot distinguish whether the
token holds redundant or complementary information for
m-th modality. Consequently, we introduce a two-level
contrastive loss on the modality-specific encoded output.
The goal of contrastive learning is to learn representations
where positive inputs are closer in feature space than nega-
tive inputs. The first-level contrastive learning objective L
uses features from the same instance as positive inputs and
features from other instances as negative inputs (Li et al.,
2022b). The second-level contrastive learning objective L
uses the n-th token from different modalities of the same in-
stance as positive inputs, while tokens from other instances
serve as negative inputs (Zhou et al., 2024). The detailed
definitions of these two-level contrastive learning objectives
can be found in Appendix A.1.

The first-level contrastive learning improves the quality of
representations. In the second-level contrastive learning, the
goal is to encourage the n-th token across different modali-
ties to capture the same information, eliminating the need for
an explicit mapping relationship between modalities. This
alignment ensures that tokens in {x,,[n] }%#m can com-
plement x,,,[n]. Consequently, the token replacement search
space is narrowed from {X,,/ } 1., t0 {Xpms (0]} ... Ad-
ditionally, the alignment in the second level reduces irrele-
vant information in {x,,, [n]}, _+m> Mitigating information
loss during the token replacement operation.

Note that the attention module is shared across all modali-
ties, and input tokens are encouraged to align through con-
trastive learning objectives. As a result, we can compare
attention values across different modalities, even if they are
not processed in the same forward pass (multiple modalities
are concatenated in the batch dimension, not the sequence
dimension). This approach avoids randomly predefining
which modality’s token can replace the current token. Con-

sequently, the token fusion operation of x,,[n] is reformu-
lated as follows:

Xm [n] =Xm [n] © Hn[m,n]QBottomKW(n[m])

M ) ) ] (4)
+ D X 1] © Lypon mjesottonse,, (nfm)) © o )2 32,
m/#m

RQ3: How to use {x,,, }_, for task prediction?
A3: Average pooling and concatenate.

After our transformer backbone, each x,,, incorporates in-
formation from other modalities information via the self-
attention module. Then, the challenge is whether to select
one x,,, from {x,, }*2_, or use the entire set for task pre-
diction. In our AMC, we use the entire set {x,, }*._, for
the final prediction. Even with contrastive learning efforts
to align modalities, modality-specific tokens can still carry
heterogeneous information. The token replacement does not
always ensure that the selected token X,/ [n] has the high-
est token score among x,,/. Consequently, using only one
X, for task prediction might overlook critical and unique
information from another modality m’. Specifically, we
apply average pooling to each x,, to obtain x,,, € R”. We
then concatenate the set {x,, }*/_, to form a longer vector
z € RPM  This concatenated vector z is subsequently fed
into the task head for prediction.

4.4. Improved Transformer Block

Although our proposed AMC provides the method to effec-
tively remove uninformative tokens and retain critical infor-
mation from important modalities for the final prediction,
two challenges remain.

> Diluted Attention Distribution. Our method heavily relies
on the attention distribution for modality importance calcu-
lation and token score assignment. However, the original
token fusion can dilute the inner-modal attention weights
of the self-attention mechanism (Wang et al., 2022b). This
dilution can significantly undermine the final performance,
potentially leading to inaccurate assessments of modality
importance and token scores in AMC.

To address this problem, we employ the differential atten-
tion module (Ye et al., 2024). This approach is inspired
by noise-canceling headphones and differential amplifiers
in electrical engineering. The technique involves partition-
ing the query and key vectors into two groups, computing
two separate attention maps, and then using the difference
between these two maps as the final attention map. This
differential operation can help reduce attention weight on
irrelevant context. For simplicity, we illustrate this using
single-head attention. Given the input sequence X,,, the
query, and key are calculated as follow:

[Q1; Q2] = x W@, [Ky1; Ko] = x,, WK, (5)
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where W@ WK ¢ RP*2D are parameters, and

Q1,Q2,K,,Ky € RVXP_ Then the attention map cal-

S KTy .
culation is re-formulated from softmax (% 75 ) to:
QKT QK3

A = softmax(

) — Asoftmax(

7D /D ), (6)
where the ) is a learnable scalar. We use this attention map
for our modality importance calculation and customized
token fusion. For a detailed description of the differential
transformer, including the multi-head extension, can refer
to Appendix A.2.

> Modality Conflict. Intuitively, we can use modality-
specific transformer layers for our token fusion, which is
also the network architecture of the original token fusion
paper. When the number of modalities increases, this de-
sign is parameter inefficient. However, using one branch
of consecutive transformer layers to process all modalities
introduces the gradient conflict optimization issue between
modalities (Yun et al., 2024a;b). Therefore, we integrate
the mixture-of-expert design to replace the original MLP
layer in the transformer block to alleviate the gradient con-
flict optimization issue. For a detailed description of our
mixture-of-experts design, please refer to Appendix A.3.

5. Experiment

Setup. To ensure a fair comparison with baselines, we
use the best hyper-parameter settings from the original pa-
pers. If these are not available, we conduct hyper-parameter
searches, including learning rate, hidden dimension, and
batch size, with ranges of [le — 3,1e — 4,5e — 5, 1e — 5],
[32,64,128], and [32, 64, 128], respectively. For our pro-
posed method, we additionally search for the number of
experts and the weights of £, L1 and the load balancing
loss of SMoE, with ranges of [4, 8, 16], [1.0, 0.1], [1.0,0.1],
and [1.0,0.1], respectively. For the dataset split, we use
70% for training, 15% for validation, and 15% for testing.
All experiments were conducted using RTX 3090 GPUs.
By default, each experiment was run five times with dif-
ferent seeds to ensure reproducibility, and the results were
averaged. The final hyper-parameter settings for AMC are
in Appendix B.1. For more implementation details for each
dataset, see Appendix B.6.

5.1. Medical Application Evaluation

Dataset. We apply AMC on three medical multi-modal
real-world datasets: Medical Information Mart for The Can-
cer Genome Atlas (TCGA), Intensive Care (MIMIC)-1V,
and Alzheimer’s Disease Neuroimaging Initiative (ADNI).
We choose 5 common used cancer types in TCGA for the
performance report.

TCGA involves data from 2,585 individuals across five can-

cer types: uterine corpus endometrial carcinoma (UCEC),
lung adenocarcinoma (LUAD), brain lower grade glioma
(LGG), breast invasive carcinoma (BRCA), and blad-
der urothelial carcinoma (BLCA). We use three modali-
ties—whole slide images (WSIs), pathology reports, and
RNA-seq data—to predict patient survival (time-to-event)
separately for each cancer type. WSIs are histopathological
images containing spatial and morphological information
vital for diagnosis and prognosis. Pathology reports, which
are text-based descriptions of tumor samples, are vectorized
before inputting to our model. Gene expression profiles mea-
sured via bulk RNA-seq provide molecular-level insights
into pathophysiology. We do the patient survival time pre-
diction on this dataset and report the c-index metric (higher
is better) (Alabdallah et al., 2024).

MIMIC-1V is alarge database of de-identified patient data
from the emergency department or intensive care unit at the
Beth Israel Deaconess Medical Center in Boston, MA. Our
dataset consists of 9,003 patients with laboratory measure-
ments (denoted as Lab), clinical notes (denoted as Note),
and billing codes (denoted as Code). Using these modalities,
we predict patient mortality within one year of admission,
framing it as a binary classification problem.

ADNI includes biofluid biomarker measurements, clinical
assessments, genomic data, and neuroimages from patients
diagnosed as cognitively normal (CN), with mild cognitive
impairment (MCI), or Alzheimer’s dementia (AD). Biospec-
imen data include biomarkers from plasma, serum, cerebral
spinal fluid (CSF), and urine samples. Clinical assessments
consist of cognitive tests, questionnaires, physical exam
measurements, and medical history. Genomic data contain
genotype dosages for 135,595 genetic variants. Neuroim-
ages are structural MP-RAGE MRIs aligned to an average
template and segmented using MUSE. Our dataset consists
of 2,380 subjects, and the inference task is diagnosis classi-
fication, framed as a three-class problem.

Result. TCGA (Table 1): AMC attains the highest c-index
on three cancer types {UCEC, LUAD,BLCA} with {0.068 —
0.510,0.009 — 0.182,0.025 — 0.128} improvement, ranks
the third best performance on LGG cancer, and the sec-
ond best performance on the BRCA cancer. Overall, AMC
achieves the best average C-index across all cancer types.
These results demonstrate that our method consistently out-
performs existing multi-modal fusion baselines in survival
prediction accuracy. ADNI (Table 2): We achieve improve-
ments of {3.64 —16.13,3.32—14.3,2.23—22.74} in terms
of Accuracy, Recall, and F1 metrics. These improvements
show that our method is reliable for the majority class and
also effectively identifies rare but important cases, making
it useful for general applications. However, our method
scores lower than MUSE and FlexMOE in Precision, sug-
gesting that more attention is needed to reduce false posi-
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Table 1. Performance on TCGA dataset. The bold denotes the best performance and the underline denotes the second-best performance.

CancerType‘ FlexMOE ‘ FuseMOE ‘ LiMOE

‘ MAGGate ‘

MulT | TF | MUSE | Proposed

UCEC | 0.51020.043 | 0.353+0.117 | 0.795£0.050 | 0.613£0.223 | 0.665+0.071 | 0.722+0.051 | 0.501+0.46 | 0.863+0.023

LUAD | 0.502#0.024 | 0.615£0.047 | 0.674£0.024 | 0.621£0.031 | 0.616£0.017 | 0.664£0.026 | 0.501+0.25 | 0.683+0.030

LGG | 050420056 | 0.567+0.08 | 0.771x0.023 | 0.799£0.019 | 0.828+0.019 | 0.696+0.031 | 0.499+0.22 | 0.795+0.019

BRCA | 0.46420.066 | 0.49+0.09 | 0.736+0.018 | 0.684x0.085 | 0.725+0.008 | 0.72120.018 | 0.501+0.26 | 0.727+0.009

BLCA | 0.4780.086 | 0.535+0.068 | 0.578+0.055 | 0.475+0.068 | 0.569+0.037 | 0.565+0.075 | 0.501+0.00 | 0.603£0.055

Average | 0492 | 0512 | 0711 | 0638 | 0681 | 0674 | 0501 | 0734
Table 2. Performance on ADNI dataset. Table 4. Different modality importance calculation methods.
‘ Acc ‘ Recall ‘ Precision ‘ F1 Recall

FlexMOE | 52.27+2.99 | 48.97+6.41 | 57.58+2.67 | 47.47+9.56
FuseMOE | 48.85+4.18 | 49.81£3.51 | 52.76+2.05 | 49.65+3.88
LiMOE | 46.55+7.56 | 41.69+4.10 | 51.92+6.44 | 34.80+8.20
MAGGate | 47.68+7.71 | 46.48+7.71 | 50.99+4.93 | 40.79+11.80

MulT | 44.87+7.85 | 40.73+6.08 | 51.00+4.34 | 32.08+10.42
TF | 39.78+9.08 | 41.85+4.87 | 45.22+3.67 | 35.27+10.20
MUSE | 51.51£1.25 | 51.71+1.82 | 58.72£0.91 | 52.59+1.65

Proposed | 55.91+2.49 | 55.03+2.58 | 55.38+2.55 | 54.82+2.41

Table 3. Performance on MIMIC-IV dataset.
‘ Acc ‘ Recall ‘ F1

FlexMOE | 74.57+0.74 | 51.76x1.21 | 54.07£2.01 | 49.96+2.31
FuseMOE | 77.3120.22 | 50.20+0.22 | 53.08%14.11 | 44.35£0.61
LIMOE | 69.99+2.24 | 56.88+1.33 | 57.13+1.02 | 56.69+1.04
MAGGate | 77.42+0.0 | 50.00£0.0 | 38.71x0.0 | 43.6420.0

Precision ‘

MulT | 68.66+1.15 | 58.62+0.57 | 57.69+0.74 | 57.96%0.72
TF | 77.4120.03 | 49.99+0.02 | 38.710.00 | 43.63+0.01
MUSE | 66.70+0.74 | 50.02+1.87 | 33.93+0.42 | 40.38+0.38
Proposed | 68.51%1.59 | 61.65£0.99 | 59.46x0.81 | 59.751.00

tives. MIMIC-IV (Table 3): We observe improvements of
{3.03—11.66,1.77 —25.53,1.79 — 19.37} in Recall, Preci-
sion, and F1, respectively. These gains demonstrate that our
method achieves more reliable and precise predictions for
the target class, particularly in scenarios where minimizing
false negatives and false positives is critical. The slightly
lower overall accuracy compared to baselines suggests that
prior methods may be overly reliant on the majority class,
potentially reflecting overfitting to class-imbalanced training
data rather than generalizing to meaningful patterns.

> Non-Medical Task Validation. We apply our method to a
traditional multi-modal dataset to test the generalizability
of the proposed AMC and network design. Due to space
constraints, the results are provided in Appendix B.2. These
results demonstrate that our method remains effective in
non-medical tasks.

| Acc | F1

| 68.51£1.59 | 61.65+0.99 | 59.46+0.81 | 59.75+1.00
AMC w/ STD | 67.24+2.00 | 62.24x1.05 | 59.50+1.21 | 59.53+1.21
AMC W/ Max | 70.23£3.65 | 59.4624.77 | 55.40+8.35 | 56.66+6.52

‘ Precision ‘

AMC

Table 5. Different token score assignment methods.
|  Acc | Recall F1
| 68.51£1.59 | 61.65:0.99 | 59.46+0.81 | 59.75£1.00

‘ Precision ‘

AMC

AMC
w/o Differential Attention

65.17+1.88 ‘ 61.54+0.80 ‘ 58.59+0.55 ‘ 58.03£1.01

AMC
w/ Original Token Fusion

66.41x1.21 ‘ 61.59+1.58 ‘ 58.89+0.49 ‘ 58.82+0.74

5.2. In-depth Analysis

In this subsection, we conduct in-depth analysis experiments
to show the insights provided by AMC. Specifically, we eval-
uate the effect of different methods for assigning modality
importance (Paragraph 1), and token score (Paragraph 2).
Then, we provide the token exchange (Paragraph 3) and the
modality score (Paragraph 4) analysis.

1. Modality Importance Calculation. To determine
modality importance, a key operation is an average (Mean)
to capture the statistical information of attention distribution
for each modality. Intuitively, the standard deviation (STD)
could also represent this statistical information. Addition-
ally, we can use Max to consider the maximum token score
of the modality as its importance.

We compared the performance differences between Mean,
STD, and Max. The results in Table 12 show that Mean and
STD yield similar results. Mean performs better in Accuracy
and F1 metrics, while STD is better in Recall and Precision.
Overall, Mean is slightly better, with a higher F1 metric and
lower standard deviation across all four metrics. The use of
Max is clearly worse than both Mean and STD, as it results
in lower Recall, Precision, and F1 metrics. This indicates
that statistical information about token scores better reflects
how each modality contributes to the final prediction.

2. Token Score Assignment. Here, we compare our
method with the original token fusion method (the “AMC w/
Original Token Fusion” in Table 5) in the token score assign-
ment. The original token fusion method uses an individual
linear network to predict the token score, while we use
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the attention map from the previous transformer layer for
this purpose. Our approach employs a differential attention
module to enhance attention map quality and mitigate the
issue of over-allocating attention to irrelevant contexts. We
also consider using a vanilla attention module to obtain the
attention map for token score assignment as an additional
method (the “AMC w/o Differential Attention” in Table 5).

The results in Table 5 show that using the attention map
from differential attention to calculate the token score is bet-
ter than using an individual linear layer (AMC outperforms
“AMC w/ Original Token Fusion” in Accuracy, Recall, Preci-
sion, and F1 metrics). The vanilla attention map faces the
over-allocation problem, resulting in poorer performance
(“AMC w/ Original Token Fusion” is better than “AMC w/o
Differential Attention” in all metrics). This indicates that the
over-allocation issue decreases the quality of using attention
maps for token score calculation.
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Figure 4. The statistic of token replacement on the MIMIC-IV
testing set. The first row shows the distribution of tokens in each
modality that have been selected for replacement by tokens from
other modalities. The last two rows show the distribution of the
number of tokens where a modality was chosen to replace another
modality’s tokens. Since token fusion is applied to each modality’s
tokens, denoted as a,,, and MIMIC-IV includes three modalities
in total, we have two rows for this data. In the format “M1—M2”,*
M1” indicates the candidate modality, while “M2” represents the
modality that will be replaced by modality “M1”. The dashed red
vertical line indicates the average value.

3. Token Exchange Analysis We visualize the token ex-
change statistics in Figure 4. The results show that more
tokens from the billing codes modality (referred to as Code)
are replaced by inter-modal tokens. It shows that the num-
ber of tokens replaced varies across modalities, with Code
having a higher frequency of token replacement. The last
two rows of Figure 4 demonstrate the dynamics of token
replacement, where one modality replaces another. For ex-
ample, tokens from the Code modality frequently replace

tokens in the Note modality, as seen in the “Code—Note”
plot. The detailed distribution of token replacements and
contributions makes the fusion process more transparent.
This transparency can be communicated to stakeholders,
such as clinicians, to build trust in automated systems that
leverage multi-modal data for decision-making.
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Figure 5. The modality importance (Top) and token score (Bot-
tom) statistics. The red dash line is the average value of modality

score and token score.

4. Modality Importance Visualization. In Figure 5, the
top row shows the distribution of modality scores for Note,
Lab, and Code. Each modality has a distinct score dis-
tribution. This indicates they contribute differently to the
model’s decisions. For example, the Code modality has
more instances with higher scores. This suggests it often
provides more valuable information. In contrast, the Lab
modality has a broader and flatter distribution. The bottom
row presents the distribution of token scores for each modal-
ity. Note and Code have narrower distributions around their
means compared to Lab. This implies more consistent token
quality in these modalities. The Lab modality shows more
variation in token informativeness. This variation can affect
the overall contribution of the Lab modality. Visualizing
modality importance and token scores is useful for building
interpretable and efficient models. It is especially important
in applications where understanding the information source
impacts decision-making.

5.3. Ablation Study

We conducted an ablation study to examine the impact of
the four key modules proposed by AMC on performance.
The results in Table 6 indicate that removing Contrastive
Loss and Differential Attention leads to lower F1 scores.
This highlights their effectiveness in enhancing token fu-
sion. The decrease in performance when SMoE is removed
underscores its role in managing gradient conflicts between
modalities. This results in the lowest F1 and Precision met-
rics. Lastly, the drop in performance when Token Fusion is
excluded demonstrates its importance in balancing contribu-
tions from different modalities.
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Table 6. The ablation study on the MIMIC-IV dataset.

Token | Contrasive | Differential

Fusion Loss Attention SMUE‘ Acc ‘ Recall ‘ Precision F1
v I v ] v |V | 6851£1.59 | 61.65:0.99 | 59.46+0.81 | 59.751.00
|V | V| V| 6697£1.67 | 62.9420.37 | 59.2420.23 | 57.71x0.90
v | V| V| 64902086 | 62.2420.85 | 59.00£0.49 | 58.4420.37
v I v ] |V ] 65.17£1.88 | 61.54+0.80 | 58.59+0.55 | 58.031.01
v v v | 65.2742.37 | 60.7821.12 | 58.23+0.43 | 57.71x0.79

6. Conclusion

We propose AMC, a dynamic fusion method that first iden-
tifies the importance of each modality and then fuses them
accordingly. Our experiments demonstrate that AMC, along
with the corresponding network architecture, can effectively
fuse multi-modal information in the medical domain. Addi-
tionally, our method provides interpretable insights into how
each modality and token contributes to the final prediction.

Impact Statement

This paper aims to advance the field of Medical Machine
Learning. All datasets used are publicly available. While
our work may have societal consequences, none need to be
specifically highlighted here.
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A. Method Details

A.1. Definition of Two-level Contrastive Learning objectives

Given B pairs data from m-th and m’-th modality, the corresponding tokens is Z5 = {a’ ,a’ ,}2 | where a}, € RV*P.

m? Tm

We denote the instance-level features as the average pooling of a?, across the first dimension for each elements, resulting in

xi, € RP. Then we define the instance-level pair-wised representation as X = {x¢,,x! ,}2 . The contrastive training

objective at the instance level with pre-defined temperature 71" is:

1 Oehx )T e ) /T
Bldn) = =gl S T 2
pll

Jj=1

)

where the (-, -) denotes the dot product operation. Then contrastive leartning objective at the token level is temperature T is:

o . olal [nlal,, () /T L ol [nla,, (n])/T .
in(Zp) = 3 log B SN G la, /T2 o8 SE SN el lag, /T ®)
n j= n

where the a’, [n] denotes the n-th token of a’,. Consequently, the £; and Ly is defined as:
Lr=> Li(Xp),Lr=_> Li.(Zp). ©)

A.2. Differential Self-Attention Details

Given the input sequence a,,, the query, and key is calculated via:

[Q1: Q2] = an W9, [K1; Ko = an WE,V = 2, WY (10)
where W& WK WV ¢ RP*2D are parameters, Q1,Qo, K1, Ky € RNXP V' ¢ RV*2D_ Then the attention map
. . T
calculation is re-formulated from sof tmax(%) to:
KT KT
A= softmaX(Q1 Ly~ /\softmax(QQ 2). (11)
VD VD

Then the attention module output is: DAttn(a,,) = AV. The ) is defined as:

A =exp(Ag, - Aky) — exp(Ag, - Aky) + Ainit (12)

where Ag,, Agys Aky s Ay € RP are learnable vectors, and \;,;+ € (0,1) is a constant number. We set A;n; = 0.1 in default.

Multi-Head Extension. When we have h attention heads, the projection parameters is defined as WZQ, WE WY i=
{0,1,---,h}. The scalar X is shared cross heads within the same layer. The computation pipeline results as follows:

[ Zl’ Qé] = amWiQa [Kiv K%] = amvvq',Ka VZ = anLWL‘V7

A= softmax(w - )\softmax(w),
vD VD
head; = A;V;
head; = (1 — Ajnit) - LN(head;),
MultiHead(a,,) = Concat(head,-- ,head;)W?,

where WO € RP*P is the learnable projection layer, LN(-) uses RMSNorm (Zhang & Sennrich, 2019) for each head, and
Concant(-) concatenates the heads together along the channel dimension. We compute the average of {Ay, -+, Ap} to
obtain the attention mapp A, which is used to determine modality importance and perform customized token fusion.

14



Modalities Contribute Unequally: Enhancing Medical Multi-modal Learning through Adaptive Modality Token Re-balancing

A.3. The Mixture-of-Expert in the Transformer Block

In our transformer block, we replace the MLP layer with a Mixture-of-Experts (MoE) module, consisting of multiple
experts denoted as {f1, f2, -, fg}, where E is the number of experts. We employ the sparse activated MoE (SMoE)
variant, which includes a router R. The router is responsible for the routing mechanism, sparsely selecting the top-k experts.
For a given token x, the router R selects the top-k experts based on scores derived from a softmax function applied to a
learnable gating function g(-). We implement this gating function using a single linear layer. The router then outputs R (x), ,
identifying the indices of the selected experts. This process is described as follows::

E

y =Y R(X)i- fix), (13)
i=1

x = Top-K(softmax(g(x)), k), (14)

Top-K — {v, if v isin the top k, (15)

0, otherwise.

where g(x) computes the scores for each expert, and the top-k function selects the experts with the highest scores. To avoid
the load imbalance problem in SMoE, we use the load and imbalance loss (Shazeer et al., 2022).

B. Experiment Details

B.1. Hyper-parameter on Each Dataset

Table 7. The hyper-parameter setup for AMC.
TCGA

| |

‘ ADNI ‘ MIMIC-1V "UCEC [ LUAD | LGG | BRCA | BLCA | ENRICO
Learning rate | le-4 | 1e3 | le3 | le3 | 1e3 | le3 | le3 | 5e3
# of Experts | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8
Top-K | 2 | 2 | 2 | 2 | 2| 2 | 2 | 2
# of Transformer Layers ‘ 2 ‘ 2 ‘ 2 ‘ 2 ‘ 2 ‘ 2 ‘ 2 ‘ 4
Training Epochs | 30 | 100 | 30 | 30 | 30 | 30 | 30 | 100
Warm-up Epochs | 5 | o | s | 5 | 5| 5 | 5 | 5
Hidden dimension | 64 | 64 | 128 | 64 | 64 | o4 | 64 | 128
Batch Size | 32 | 64 | 64 | 64 | 64 | 64 | 64 | 128
#of Attention Heads | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8

B.2. Non-Medical Multi-modal Evaluation

Dataset. We select Enhanced Rico (ENRICO) dataset (Leiva et al., 2021) evaluates the generalizability of AMC. The
ENRICO is the dataset of Android app screens categorized by their design motifs. It contains 1,460 Android app screens
(image modality) and the corresponding view hierarchy (set modality). The instances in this ENRICO can be categorized
into 20 design categories.

Result. We compare existing fusion methods tested on this dataset as described in (Liang et al., 2021; Paul Pu Liang et al.,
2022). We use the same evaluation setup as in these references, which includes searching for hyper-parameters like learning
rate and hidden dimension. We report the mean and standard deviation from 10 repetitions, ensuring a fair comparison with
the results from (Liang et al., 2021; Paul Pu Liang et al., 2022). All baseline results are taken from the original papers (Liang
et al., 2021; Paul Pu Liang et al., 2022). However, we lack the standard deviation for HighMMT because it was not reported
in the original paper. From Table 8, we see that our method, AMC, shows an improvement of {16.3 — 24.5} over multi-modal
baselines and {21.9 — 22.8} over single-modal baselines. This result demonstrates that our method is also effective in a
non-medical multi-modal benchmark.
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Table 8. Performance on the ENRICO dataset. We refer to the evaluation metric on previous works (Liang et al., 2021; Paul Pu Liang
et al., 2022), and report the 20 classes’ prediction accuracy (%).
‘ Unimodal (MultiBench) ‘ Unimodal (MultiBench) ‘ Late Fusion ‘ TensorFusion ‘ LRTF ‘ MI-Matrix ‘ CCA ‘ RefNet ‘ GradBlend ‘ HighMMT ‘ Proposed

Modality ‘ Image ‘ Set ‘ Image, Set
Acc (20) | 47.0£1.6 | 46.1x1.3 | 508+2.0 | 46.6£1.9 | 47.1x29 | 46.7+2.4 | 50.1£14 | 444422 | 51.0%14 | 526 | 68.9%3.7

Table 9. Extend AMC for the modality missing scenario.
| Acc | Recall | Precision | F1
AMC | 55.91+2.49 | 55.03+2.58 | 55.38+2.55 | 54.8242.41
AMC w/ missing modality | 56.3+2.21 | 55.77+332 | 57.39+2.29 | 54.81%2.18

B.3. Extra Experiments

Modality Missing Scenario. We extend AMC to solve the missing modality problem. In such cases, we treat the importance
score and token score of any missing modality as zero. This approach enables AMC to function effectively even when some
data is unavailable. To demonstrate AMC’s adaptability to the missing modality scenario, we conducted experiments using
the ADNI dataset. This dataset is naturally suited for testing missing modality scenarios, providing a robust environment to
validate our approach. The results in the Table 9 indicates that AMC’s performance decreases only slightly when dealing
with missing modalities. This demonstrates that AMC can effectively handle the missing modality problem through simple
extensions. We use the same model but add examples with missing modality problems. The similar performance indicates
that AMC still keeps its prediction capability in these additional examples.

Efficiency Experiment. We report the Mean time per iteration during training, and GFLOPs during testing across baselines
and AMC. The result in Table 10 shows our method is computationally efficient.

Modality Importance Varies Across Tasks. We evaluate the single modality task performance across MIMIC-IV and
ADNI. The results in Table 12 show that the importance of different modalities varies across different tasks.

B.4. Importance of Modality Score

Dataset Level Modality Importance. We assess modality importance at the dataset level using the MIMIC-1V dataset.
Each modality is evaluated individually using the same AMC backbone. The results in Table 12 indicates that the *Code’
modality is less important (the lowest F1, Recall, and Precision), aligning with Figure 4 where *’Code’ has a higher frequency
of token replacement.

Instance Level Modality Measurements. We investigate the effectiveness of our modality score in reducing prediction
uncertainty. We compare the uncertainty of predictions with their original modality scores against AMC with equal modality
scores. The uncertainty of predictions is defined as — Zf\il p; log(p;), where p; is the predicted probability of class i.
Our findings show that the modality importance score effectively reduces prediction uncertainty (from 0.1218 increase to
0.1343), demonstrating its utility in identifying significant modalities.

B.5. Interpretability Experiment

Gradient Conflict. We analyze the distribution of cosine distances between training gradients derived from the different
modalities in the MIMIC-IV dataset. These gradients are computed from a model configured with experts and a dense MLP,
both following the same configuration as in the AMC and Dense Model setups. The gradients are extracted from the final
transformer layer. Higher positive cosine distances indicate reduced gradient conflict, which suggests better alignment
between the modalities in terms of learning direction. Our result in Figure 6 shows that the SMoE effectively alleviates the
gradient conflict between different modalities.

Modality Importance (Case Study). We propose a case study using images from the TCGA dataset. The image is easier
for readers to realize the modality data quality. This study illustrates the variation in modality importance, providing a visual
representation of data quality. The results in Figure 7 show that images with lower modality importance scores generally
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Table 10. The computation efficiency comparison.

Metric | FlexMOE | FuseMOE | LIMOE | MAGGate | MulT | TF | AMC
Mean Time (s) | 1273 | 1868 | 1265 | 1164 | 1285 | 124 | 115
GFLOPs | 5907 | 5976 | 5941 | 5906 | 60.12 | 5939 | 45.23

Table 11. The modality importance across different tasks.
MIMIC-IV | Code | Note | Lab | ADNI | Genomic | Image | Biospecimen | Clinical

Acc | 67.95 | 67.58 | 64.77 | Acc | 5294 | 5321 | 504 | 5350
Precision | 55.44 | 55.82 | 59.18 | Precision | 5323 | 5591 |  49.1 | 5330
Recall | 55.88 | 56.51 | 62.50 | Recall | 5355 | 5470 | 326 | 5243
F1 | 55.60 | 56.02 | 58.67 | F1 | 5230 | 5412 | 3901 | 4732

exhibit poor quality, while images with higher scores indicate better quality.

Token Replacement (Case Study). We provide several case studies about how each modality’s tokens are replaced by
other modalities’ tokens in the Figure 8.

B.6. Implementation Details

The implementation difference between each dataset is the modality-specific encoder.

MIMIC-IV. In MIMIC-IV, each modality is represented as a feature vector. We begin by splitting each feature vector into
N sub-vectors and projecting these sub-vectors into the model’s hidden dimension. Learnable positional embeddings (Wang
et al., 2022a) are then added to transform these projections into input tokens. To enhance feature quality, we first pass these
tokens through modality-specific vanilla transformer layers. The outputs from these layers are then fed into our improved
transformer blocks, where token fusion is performed to integrate the modalities effectively. Finally, these integrated tokens
are used to make the final prediction.

ADNI. In ADNI, genomic, biospecimen, and clinical modalities are represented as feature vectors. As with MIMIC-1V, we
split each feature vector into /N sub-vectors which are projected into the model’s hidden dimension. The imaging modality
is represented as a 3D tensor to which we first apply multiple 3D convolutions with batch normalization. This is followed
by average pooling and a linear layer projection to produce a feature vector that is split into /N sub-vectors in the model’s
hidden dimension. The resulting representations are in the same format as the other modalities and undergo the same
downstream steps as described for MIMIC-IV. Namely, learnable positional embeddings are added to the vectors to produce
input tokens, which are then passed through modality-specific vanilla transformer layers. This is followed by token fusion
via our improved transformer blocks, resulting in integrated tokens that are utilized for prediction.

TCGA. InTCGA, each modality is represented as a feature vector. RNA-seq data is already tabular, whereas the WSIs
and text data were preprocessed to extract feature vectors. Inputs are first projected into the model’s hidden dimension and
then split into IV sub-vectors. Query tokens are learned by applying a single transformer layer with attention between these
tokens and the sub-vectors. The resulting outputs are /N tokens per modality. The following steps are the same as outlined
above: learnable positional embeddings are added to these input tokens, these are then input to modality-specific vanilla

Table 12. Dataset-level modality importance on the MIMIC-IV dataset.
Modality | Code | Note | Lab

Acc | 67.95 | 67.58 | 64.77
Precision | 55.44 | 55.82 | 59.18
Recall | 55.88 | 56.51 | 62.50
F1 | 55.60 | 56.02 | 58.67
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Figure 6. Gradient Conflict. The gradient conflict between different modalities in the MIMIC-IV dataset. The “AMC w/ MoE” is the
proposed AMC method, and “AMC w/o MoE” replaces the MoE to its dense counterpart.

Modality Score Modality Score
Image: 0.31, RNA-seq: 0.34 Image: 0.34, RNA-seq: 0.32
Text: 0.35 Text: 0.33
D ey
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5 Little Cracking
No Ari Bubble
Evan Stain
Distribution

Figure 7. Modality Importance. The case study about the modality data quality identified by our proposed modality importance. The
image on the left side obtains the lowest modality importance, and the right side image obtains the highest modality importance.

transformer layers, and token fusion is applied to generate integrated tokens for the prediction task.
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purple blocks indicate Lab tokens, and blue blocks signify Note tokens. The first row shows the token

Figure 8. Token Replacement. The case study on token replacement within the MIMIC

red blocks represent Code tokens

]

sequence before replacement. Each subsequent row displays the token sequence after replacement for a different instance. We randomly

select 100 instances from the testing set for the visualization.
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